

1

2

Catalog

1. Kit introduction .. 1

2. Kit contents .. 2

3. Project list .. 3

4. Project details ... 4

Project 1: Hello World ... 4

Project 2: LED blinking ... 7

Project 3: PWM .. 9

Project 4: Traffic light.. 14

Project 5: LED chasing effect... 18

Project 6: Button-controlled LED ... 22

Project 7: Active buzzer ... 26

Project 8: Passive buzzer ... 30

Project 9: RGB LED ... 33

Project 10: Photo resistor ... 36

Project 11: Flame sensor .. 39

Project 12: LM35 temperature sensor ... 44

Project 13: Tilt switch .. 47

Project 14: IR remote control ... 50

Project 15: Analog value reading .. 59

Project 16: 74HC595 ... 63

Project 17: 1-digit LED segment display... 67

Project 18: 4-digit LED segment display... 74

Project 19: 8*8 LED matrix ... 83

Project 20: 1602 LCD .. 90

Project 21: 9g servo control ... 102

5. Summary .. 错误！未定义书签。

 1

1. Kit introduction

This is the basic Starter Kit, developed specially for those beginners who are interested in Arduino.

You will have a set of Arduino's most common and useful electronic components. What's more. We

will offer you a detailed tutorials including project introduction and their source codes.You may learn

about Arduino through using these basic projects. This kit will help you control the physical world

with sensors.

 2

2. Kit contents

Kit A for unoR3 Kit B for 2560 R3 Kit C Without board

UNO R3 Mega 2560 No controller board

5x LED - Blue 5x LED - Blue 5x LED - Blue

5x LED - Red 5x LED - Red 5x LED - Red

5x LED - Yellow 5x LED - Yellow 5x LED - Yellow

1x LED - RGB 1x LED - RGB 1x LED - RGB

5x 10K Ω resistor 5x 10K Ω resistor 5x 10K Ω resistor

5x 1K Ω resistor 5x 1K Ω resistor 5x 1K Ω resistor

8x 220 Ω resistor 8x 220 Ω resistor 8x 220 Ω resistor

1x 10K Ω Pot 1x 10K Ω Pot 1x 10K Ω Pot

1x 7-seg LED 1x module 1x 7-seg LED 1x module 1x 7-seg LED 1x module

1x 7-seg LED 4x module 1x 7-seg LED 4x module 1x 7-seg LED 4x module

1x 8x8 LED Matrix 1x 8x8 dot LED array 1x 8x8 dot LED array

1x Buzzer (active) 1x Buzzer (active) 1x Buzzer (active)

1x Buzzer (passive) 1x Buzzer (passive) 1x Buzzer (passive)

1x Flame sensor 1x Flame sensor 1x Flame sensor

1x IR receiver 1x IR receiver 1x IR receiver

1x IR remote control 1x IR remote control 1x IR remote control

1x LM35 Temp Sensor 1x LM35 Temp Sensor 1x LM35 Temp Sensor

2x Ball tilt sensor 2x Ball tilt sensor 2x Ball tilt sensor

3x Photo Resistor 3x Photo Resistor 3x Photo Resistor

4x Small button switch 4x Small button switch 4x Small button switch

1x IC 74HC595N 16-pin DIP 1x IC 74HC595N 16-pin DIP 1x IC 74HC595N 16-pin DIP

1x LCD1602 1X LCD1602 1X LCD1602

1x 9g servo 1X 9G sevro 1X 9G sevro

830-pin Breadboard 830-pin Breadboard 830-pin Breadboard

Dupont connector wires Dupont connector wires Dupont connector wires

1x 6-cell AA Battery pack 1x 6-cell AA Battery pack 1x 6-cell AA Battery pack

1x USB cable 1x USB cable 1x USB cable

 3

3. Project list

1. Hello World

2. LED blinking

3. PWM

4. Traffic light

5. LED chase effect

6. Button-controlled LED

7. Active buzzer

8. Passive buzzer

9. RGB LED

10. Photo resistor

11. Flame sensor

12. LM35 temperature sensor

13. Tilt switch

14. IR remote control

15. Analog value reading

16. 74HC595

17. 1-digit LED segment display

18. 4-digit LED segment display

19. 8*8 LED matrix

20. 1602 LCD

21. 9g servo control

www.keyestudio.cc
 4

4. Project details

Project 1: Hello World

Introduction

As for starters, we will begin with something simple. In this project, you only need an Arduino and a

USB cable to start the "Hello World!" experiment. This is a communication test of your Arduino and

PC, also a primer project for you to have your first try of the Arduino world!

Hardware required

1. Arduino board x1

2. USB cable x1

Sample program

After installing driver for Arduino, let's open Arduino software and compile code that enables Arduino

to print "Hello World!" under your instruction. Of course, you can compile code for Arduino

to continuously echo "Hello World!" without instruction. A simple If () statement will do the

instruction trick. With the onboard LED connected to pin 13, we can instruct the LED to blink first

when Arduino gets an instruction and then print "Hello World!”.

//

int val;//define variable val

int ledpin=13;// define digital interface 13

void setup()

{

 Serial.begin(9600);// set the baud rate at 9600 to match the software set up. When connected to a

specific device, (e.g. bluetooth), the baud rate needs to be the same with it.

 pinMode(ledpin,OUTPUT);// initialize digital pin 13 as output. When using I/O ports on an

Arduino, this kind of set up is always needed.

}

void loop()

{

 val=Serial.read();// read the instruction or character from PC to Arduino, and assign them to Val.

 if(val=='R')// determine if the instruction or character received is “R”.

 { // if it’s “R”,

 digitalWrite(ledpin,HIGH);// set the LED on digital pin 13 on.

 delay(500);

keyestudio

www.keyestudio.cc
 5

 digitalWrite(ledpin,LOW);// set the LED on digital pin 13 off. delay(500);

 Serial.println("Hello World!");// display“Hello World！”string.

 }

}

//

Result

Screenshot

keyestudio

www.keyestudio.cc
 6

Click serial port monitor

Input R

LED 13 will blink once；

PC will receive information from Arduino: Hello World

After you choose the right port，the experiment should be easy for you!

keyestudio

www.keyestudio.cc
 7

Project 2: LED blinking

Introduction

Blinking LED experiment is quite simple. In the "Hello World!" program, we have come across LED.

This time, we are going to connect an LED to one of the digital pins rather than using LED13, which

is soldered to the board. Except an Arduino and an USB cable, we will need extra parts as below:

Hardware required

1. Red M5 LED*1

2. 220Ω resistor*1

3. Breadboard*1

4. Breadboard jumper wires* several

We follow below diagram from the experimental schematic link. Here we use digital pin 10. We

connect LED to a 220 ohm resistor to avoid high current damaging the LED.

Connection for Uno R3:

keyestudio

www.keyestudio.cc
 8

Connection for 2560 R3:

keyestudio

www.keyestudio.cc
 9

Sample program

//

int ledPin = 10; // define digital pin 10.

void setup()

{

pinMode(ledPin, OUTPUT);// define pin with LED connected as output.

}

void loop()

{

digitalWrite(ledPin, HIGH); // set the LED on.

delay(1000); // wait for a second.

digitalWrite(ledPin, LOW); // set the LED off.

delay(1000); // wait for a second

}

//

Result

After downloading this program, in the experiment, you will see the LED connected to pin 10 turning

on and off, with an interval approximately one second.

The blinking LED experiment is now completed. Thank you!

Project 3: PWM

keyestudio

www.keyestudio.cc
 10

Introduction

PWM, short for Pulse Width Modulation, is a technique used to encode analog signal level into digital

ones. A computer cannot output analog voltage but only digital voltage values such as 0V or 5V. So

we use a high resolution counter to encode a specific analog signal level by modulating the duty cycle

of PMW. The PWM signal is also digitalized because in any given moment, fully on DC power supply

is either 5V (ON), or 0V (OFF). The voltage or current is fed to the analog load (the device that uses

the power) by repeated pulse sequence being ON or OFF. Being on, the current is fed to the load;

being off, it's not. With adequate bandwidth, any analog value can be encoded using PWM. The output

voltage value is calculated via the on and off time. Output voltage = (turn on time/pulse time) *

maximum voltage value

PWM has many applications: lamp brightness regulating, motor speed regulating, sound making, etc.

The following are the three basic parameters of PMW:

1. The amplitude of pulse width (minimum / maximum)

2. The pulse period (The reciprocal of pulse frequency in 1 second)

 Width

Cycle

Level

keyestudio

www.keyestudio.cc
 11

3. The voltage level（such as：0V-5V）

There are 6 PMW interfaces on Arduino, namely digital pin 3, 5, 6, 9, 10, and 11. In previous

experiments, we have done "button-controlled LED", using digital signal to control digital pin, also

one about potentiometer. This time, we will use a potentiometer to control the brightness of the LED.

Hardware required

1. Potentiometer module*1

2. Red M5 LED*1

3. 220Ω resistor

4. Breadboard*1

5. Breadboard jumper wires*several

The input of potentiometer is analog, so we connect it to analog port, and LED to PWM port.

Different PWM signal can regulate the brightness of the LED.

Connection for R3:

Connection for 2560 R3:

keyestudio

www.keyestudio.cc
 12

Sample program

In the program compiling process, we will use the analogWrite (PWM interface, analog value)

function. In this experiment, we will read the analog value of the potentiometer and assign the value to

PWM port, so there will be corresponding change to the brightness of the LED. One final part will be

displaying the analog value on the screen. You can consider this as the "analog value reading" project

adding the PWM analog value assigning part. Below is a sample program for your reference.

//

int potpin=0;// initialize analog pin 0

int ledpin=11;//initialize digital pin 11（PWM output）

int val=0;// Temporarily store variables' value from the sensor

void setup()

{

pinMode(ledpin,OUTPUT);// define digital pin 11 as “output”

Serial.begin(9600);// set baud rate at 9600

// attention: for analog ports, they are automatically set up as “input”

}

void loop()

{

keyestudio

www.keyestudio.cc
 13

val=analogRead(potpin);// read the analog value from the sensor and assign it to val

Serial.println(val);// display value of val

analogWrite(ledpin,val/4);// turn on LED and set up brightness（maximum output of PWM is 255）

delay(10);// wait for 0.01 second

}

//

Result

After downloading the program, when we rotate the potentiometer knob, we can see changes of the

displaying value, also obvious change of the LED brightness on the breadboard.

keyestudio

www.keyestudio.cc
 14

Project 4: Traffic light

Introduction

In the previous program, we have done the LED blinking experiment with one LED. Now, it’s time to

up the stakes and do a bit more complicated experiment-traffic lights. Actually, these two experiments

are similar. While in this traffic lights experiment, we use 3 LEDs with different color other than 1

LED.

Hardware required

1. Arduino board *1

2. USB cable *1

3. Red M5 LED*1

4. Yellow M5 LED*1

5. Green M5 LED*1

6. 220Ω resistor *3

7. Breadboard*1

8. Breadboard jumper wires* several

Connection for R3:

keyestudio

www.keyestudio.cc
 15

Connection for 2560 R3:

keyestudio

www.keyestudio.cc
 16

Sample program

Since it is a simulation of traffic lights, the blinking time of each LED should be the same with those

in traffic lights system. In this program, we use Arduino delay () function to control delay time, which

is much simpler than C language.

//

int redled =10; // initialize digital pin 8.

int yellowled =7; // initialize digital pin 7.

int greenled =4; // initialize digital pin 4.

void setup()

{

pinMode(redled, OUTPUT);// set the pin with red LED as “output”

pinMode(yellowled, OUTPUT); // set the pin with yellow LED as “output”

pinMode(greenled, OUTPUT); // set the pin with green LED as “output”

}

void loop()

{

digitalWrite(greenled, HIGH);//// turn on green LED

delay(5000);// wait 5 seconds

keyestudio

www.keyestudio.cc
 17

digitalWrite(greenled, LOW); // turn off green LED

for(int i=0;i<3;i++)// blinks for 3 times

{

delay(500);// wait 0.5 second

digitalWrite(yellowled, HIGH);// turn on yellow LED

delay(500);// wait 0.5 second

digitalWrite(yellowled, LOW);// turn off yellow LED

}

delay(500);// wait 0.5 second

digitalWrite(redled, HIGH);// turn on red LED

delay(5000);// wait 5 second

digitalWrite(redled, LOW);// turn off red LED

}

//

Result

When the uploading process is completed, we can see traffic lights of our own design.

Note: this circuit design is very similar with the one in LED chase effect.

The green light will be on for 5 seconds, and then off., followed by the yellow light blinking for 3

times, and then the red light on for 5 seconds, forming a cycle. Cycle then repeats.

Experiment is now completed, thank you.

keyestudio

www.keyestudio.cc
 18

Project 5: LED chasing effect

Introduction

We often see billboards composed of colorful LEDs. They are constantly changing to form various

effects. In this experiment, we compile a program to simulate chase effect.

Hardware required

1. Led x6

2. 220Ω resistor x6

3. Colorful breadboard wires

Connection for R3:

keyestudio

www.keyestudio.cc
 19

Connection for 2560 R3:

keyestudio

www.keyestudio.cc
 20

Sample program

//

int BASE = 2 ; // the I/O pin for the first LED

int NUM = 6; // number of LEDs

void setup()

{

 for (int i = BASE; i < BASE + NUM; i ++)

 {

 pinMode(i, OUTPUT); // set I/O pins as output

keyestudio

www.keyestudio.cc
 21

 }

}

void loop()

{

 for (int i = BASE; i < BASE + NUM; i ++)

 {

 digitalWrite(i, LOW); // set I/O pins as “low”, turn off LEDs one by one.

 delay(200); // delay

 }

 for (int i = BASE; i < BASE + NUM; i ++)

 {

 digitalWrite(i, HIGH); // set I/O pins as “high”, turn on LEDs one by one

 delay(200); // delay

 }

}

//

Result

You can see the LEDs blink by sequence.

keyestudio

www.keyestudio.cc
 22

Project 6: Button-controlled LED

Introduction

I/O port means interface for INPUT and OUTPUT. Up until now, we have only used its OUTPUT

function. In this experiment, we will try to use the input function, which is to read the output value of

device connecting to it. We use 1 button and 1 LED using both input and output to give you a better

understanding of the I/O function. Button switches, familiar to most of us, are a switch value (digital

value) component. When it's pressed, the circuit is in closed (conducting) state.

Hardware required

1. Button switch*1

2. Red M5 LED*1

3. 220Ω resistor*1

4. 10KΩ resistor*1

5. Breadboard*1

6. Breadboard jumper wires*several

Connection for R3:

keyestudio

www.keyestudio.cc
 23

Connection for 2560 R3:

keyestudio

www.keyestudio.cc
 24

Sample program

Now, let's begin the compiling. When the button is pressed, the LED will be on. After the previous

study, the coding should be easy for you. In this program, we add a statement of judgment. Here, we

use an if () statement.

Arduino IDE is based on C language, so statements of C language such as while, switch etc. can

certainly be used for Arduino program.

When we press the button, pin 7 will output high level. We can program pin 11 to output high level

and turn on the LED. When pin 7 outputs low level, pin 11 also outputs low level and the LED

remains off.

//

int ledpin=11;// initialize pin 11

int inpin=7;// initialize pin 7

int val;// define val

void setup()

{

pinMode(ledpin,OUTPUT);// set LED pin as “output”

pinMode(inpin,INPUT);// set button pin as “input”

keyestudio

www.keyestudio.cc
 25

}

void loop()

{

val=digitalRead(inpin);// read the level value of pin 7 and assign if to val

if(val==LOW)// check if the button is pressed, if yes, turn on the LED

{ digitalWrite(ledpin,LOW);}

else

{ digitalWrite(ledpin,HIGH);}

}

//

Result

When the button is pressed, LED is on, otherwise, LED remains off. After the above process, the

button controlled LED experiment is completed. The simple principle of this experiment is widely

used in a variety of circuit and electric appliances. You can easily come across it in your every day life.

One typical example is when you press a certain key of your phone, the backlight will be on.

keyestudio

www.keyestudio.cc
 26

Project 7: Active buzzer

Introduction

Arduino enables us to make many interesting interactive projects, many of which we have done

consists of a LED. They are light-related. While this time, the circuit will produce sound. The sound

experiment is usually done with a buzzer or a speaker, while buzzer is simpler and easier to use. The

buzzer we introduced here is a passive buzzer. It cannot be actuated by itself, but by external pulse

frequencies. Different frequencies produce different sounds. We can use Arduino to code the melody

of a song, which is actually fun and simple.

Hardware required

1. Buzzer*1

2. Key *1

3. Breadboard*1

4. Breadboard jumper wires*several

Connection for R3:

keyestudio

www.keyestudio.cc
 27

Connection for 2560 R3:

keyestudio

www.keyestudio.cc
 28

When connecting the circuit, pay attention to the positive & the negative poles of the buzzer. In the

photo, you can see there are red and black lines. When the circuit is finished, you can begin

programming.

Sample program

Program is simple. You control the buzzer by outputting high/low level.

//

int buzzer=8;// initialize digital IO pin that controls the buzzer

void setup()

{

 pinMode(buzzer,OUTPUT);// set pin mode as “output”

}

void loop()

{

digitalWrite(buzzer, HIGH); // produce sound

keyestudio

www.keyestudio.cc
 29

}

//

Result

After downloading the program, the buzzer experiment is completed. You can see the buzzer is

ringing.

keyestudio

www.keyestudio.cc
 30

Project 8: Passive buzzer

Introduction

We can use Arduino to make many interactive works of which the most commonly used is

acoustic-optic display. All the previous experiment has something to do with LED. However, the

circuit in this experiment can produce sound. Normally, the experiment is done with a buzzer or a

speaker while buzzer is simpler and easier to use. The buzzer we introduced here is a passive buzzer. It

cannot be actuated by itself, but by external pulse frequencies. Different frequencies produce different

sounds. We can use Arduino to code the melody of a song, which is actually quite fun and simple.

Hardware required

1. Passive buzzer*1

2. Key *1

3. Breadboard*1

4. Breadboard jumper wires* several

Connection for R3:

keyestudio

www.keyestudio.cc
 31

Connection for 2560 R3:

Sample program

//

int buzzer=8;// select digital IO pin for the buzzer

void setup()

{

pinMode(buzzer,OUTPUT);// set digital IO pin pattern, OUTPUT to be output

}

void loop()

{ unsigned char i,j;//define variable

while(1)

{ for(i=0;i<80;i++)// output a frequency sound

{ digitalWrite(buzzer,HIGH);// sound

delay(1);//delay1ms

keyestudio

www.keyestudio.cc
 32

digitalWrite(buzzer,LOW);//not sound

delay(1);//ms delay

}

for(i=0;i<100;i++)// output a frequency sound

{

digitalWrite(buzzer,HIGH);// sound

digitalWrite(buzzer,LOW);//not sound

delay(2);//2ms delay

}

}

}

//

After downloading the program, buzzer experiment is finished.

keyestudio

www.keyestudio.cc
 33

Project 9: RGB LED

Introduction

Tricolor principle to display various colors

PWM controlling ports to display full color

Can be driven directly by Arduino PWM interfaces

Hardware Required

Arduino controller × 1

USB cable × 1

Full-color LED module × 1

Connection for R3:

keyestudio

www.keyestudio.cc
 34

Connection for 2560 R3:

Sample program

//

int redpin = 11; //select the pin for the red LED

int bluepin =10; // select the pin for the blue LED

int greenpin =9;// select the pin for the green LED

int val;

void setup() {

 pinMode(redpin, OUTPUT);

 pinMode(bluepin, OUTPUT);

 pinMode(greenpin, OUTPUT);

keyestudio

www.keyestudio.cc
 35

 Serial.begin(9600);

}

void loop()

{

for(val=255; val>0; val--)

 {

 analogWrite(11, val);

 analogWrite(10, 255-val);

 analogWrite(9, 128-val);

 delay(1);

 }

for(val=0; val<255; val++)

 {

 analogWrite(11, val);

 analogWrite(10, 255-val);

 analogWrite(9, 128-val);

 delay(1);

 }

 Serial.println(val, DEC);

}

//

Result

Directly copy the above code into arduino IDE, and click upload , wait a few seconds, you can

see a full-color LED

keyestudio

www.keyestudio.cc
 36

Project 10: Photo resistor

Introduction

After completing all the previous experiments, we acquired some basic understanding

and knowledge about Arduino application. We have learned digital input and output,

analog input and PWM. Now, we can begin the learning of sensors applications.

Photo resistor (Photovaristor) is a resistor whose resistance varies according to

different incident light strength. It's made based on the photoelectric effect of

semiconductor. If the incident light is intense, its resistance reduces; if the incident light

is weak, the resistance increases. Photovaristor is commonly applied in the measurement

of light, light control and photovoltaic conversion (convert the change of light into the

change of electricity).

Photo resistor is also being widely applied to various light control circuit, such as light

control and adjustment, optical switches etc.

We will start with a relatively simple experiment regarding photovaristor application.

Photovaristor is an element that changes its resistance as light strenth changes. So we will

need to read the analog values. We can refer to the PWM experiment, replacing the

potentiometer with photovaristor. When there is change in light strength, there will be

corresponding change on the LED.

Hardware required

Photo resistor*1

Red M5 LED*1

10KΩresistor*1

220Ωresistor*1

Bread board*1

Bread board jumper wires*several

Connection for R3:

keyestudio

www.keyestudio.cc
 37

Connection for 2560 R3:

keyestudio

www.keyestudio.cc
 38

Sample program

After the connection, let's begin the program compiling. The program is similar to the

one of PWM. For change detail, please refer to the sample program below.

//

int potpin=0;// initialize analog pin 0, connected with photovaristor

int ledpin=11;// initialize digital pin 11, output regulating the brightness of LED

int val=0;// initialize variable va

void setup()

{

pinMode(ledpin,OUTPUT);// set digital pin 11 as “output”

Serial.begin(9600);// set baud rate at “9600”

}

void loop()

{

val=analogRead(potpin);// read the analog value of the sensor and assign it to val

Serial.println(val);// display the value of val

analogWrite(ledpin,val);// turn on the LED and set up brightness（maximum output value

255）

delay(10);// wait for 0.01

keyestudio

www.keyestudio.cc
 39

}

//

Result

After downloading the program, you can change the light strength around the

photovaristor and see corresponding brightness change of the LED. Photovaristors has

various applications in our everyday life. You can make other interesting interactive

projects base on this one.

Project 11: Flame sensor

Introduction

Flame sensor (Infrared receiving triode) is specially used on robots to find the fire source. This sensor

is of high sensitivity to flame. Below is a photo of it.

Working principle:

Flame sensor is made based on the principle that infrared ray is highly sensitive to flame. It has a

specially designed infrared receiving tube to detect fire, and then convert the flame brightness to

fluctuating level signal. The signals are then input into the central processor and be dealt with

accordingly.

Sensor connection

The shorter lead of the receiving triode is for negative, the other one for positive. Connect negative to

5V pin, positive to resistor; connect the other end of the resistor to GND, connect one end of a jumper

keyestudio

www.keyestudio.cc
 40

wire to a clip which is electrically connected to sensor positive, the other end to analog pin. As shown

below:

Hardware required

1. Flame sensor *1

2. Buzzer *1

3. 10K resistor x1

4. Breadboard jumper wires: several

Experiment connection

1）Connecting buzzer:

Connect the controller board, prototype board, breadboard and USB cable according to the Arduino

tutorial. Connect the buzzer to digital pin 8.

2）Connecting flame sensor:

The negative of infrared receiving triode

Connect to analog pin

The positive of infrared receiving triode

Flame sensor

keyestudio

www.keyestudio.cc
 41

Connect the sensor to analog pin 0.

Connection for R3:

Connection for 2560 R3:

keyestudio

www.keyestudio.cc
 42

Experiment principle

When it's approaching a fire, the voltage value the analog port reads differs. If you use a multimeter,

you can know when there is no fire approaching, the voltage it reads is around 0.3V; when there is fire

approaching, the voltage it reads is around 1.0V, tthe nearer the fire, the higher the voltage.

So in the beginning of the program, you can initialize voltage value i (no fire value); Then,

continuously read the analog voltage value j and obtain difference value k=j-i; compare k with 0.6V

(123 in binary) to determine whether or not there is a fire approaching; if yes, the buzzer will buzz.

Sample program

keyestudio

www.keyestudio.cc
 43

//

int flame=0;// select analog pin 0 for the sensor

 int Beep=9;// select digital pin 9 for the buzzer

 int val=0;// initialize variable

 void setup()

{

 pinMode(Beep,OUTPUT);// set LED pin as “output”

 pinMode(flame,INPUT);// set buzzer pin as “input”

 Serial.begin(9600);// set baud rate at “9600”

 }

void loop()

{

 val=analogRead(flame);// read the analog value of the sensor

 Serial.println(val);// output and display the analog value

 if(val>=600)// when the analog value is larger than 600, the buzzer will buzz

 {

 digitalWrite(Beep,HIGH);

 }else

 {

 digitalWrite(Beep,LOW);

 }

 delay(500);

}

//

Result

This program can simulate an alarm when there is a fire. Everything is normal when there is no fire;

when there is, the alarm will be set off immediately.

keyestudio

www.keyestudio.cc
 44

Project 12: LM35 temperature sensor

Introduction

LM35 is a common and easy-to-use temperature sensor. It does not require other hardware. You just

need an analog port to make it work. The difficulty lies in compiling the code to convert the analog

value it reads to celsius temperature.

Hardware required

1. LM35*1

2. Breadboard*1

3. Breadboard jumper wires*several

Connection for R3:

Connection for 2560 R3:

keyestudio

www.keyestudio.cc
 45

Sample program

//

int potPin = 0; // initialize analog pin 0 for LM35 temperature sensor

void setup()

{

Serial.begin(9600);// set baud rate at”9600”

}

void loop()

{

int val;// define variable

int dat;// define variable

val=analogRead(0);// read the analog value of the sensor and assign it to val

dat=(125*val)>>8;// temperature calculation formula

Serial.print("Tep:");// output and display characters beginning with Tep

Serial.print(dat);// output and display value of dat

Serial.println("C");// display “C” characters

delay(500);// wait for 0.5 second

}

keyestudio

www.keyestudio.cc
 46

//

Result

After downloading the program, you can open the monitoring window to see current temperature.

keyestudio

www.keyestudio.cc
 47

Project 13: Tilt switch

Introduction

Tilt switch controlling the ON and OFF of LED

Hardware required

1. Ball switch*1

2. Led *1

3. 220Ω resistor*1

4. Breadboard jumper wires:several

Connection for R3:

Connection for 2560 R3:

keyestudio

www.keyestudio.cc
 48

Connect the controller board, shield, breadboard and USB cable according to Arduino tutorial.

Connect the LED to digital pin 8, ball switch to analog pin 5.

Experiment principle

When one end of the switch is below horizontal position, the switch is on. The voltage of the analog

port is about 5V (1023 in binary). The LED will be on. When the other end of the switch is

below horizontal position, the switch is off. The voltage of the analog port is about 0V (0 in binary).

The LED will be off. In the program, we determine whether the switch is on or off according to the

voltage value of the analog port, whether it's above 2.5V (512 in binary) or not.

Sample Program

//

void setup()

{

 pinMode(8,OUTPUT);// set digital pin 8 as “output”

}

void loop()

{

keyestudio

www.keyestudio.cc
 49

int i;// define variable i

while(1)

{

 i=analogRead(5);// read the voltage value of analog pin 5

 if(i>512)// if larger that 512（2.5V）

 {

 digitalWrite(8,LOW);// turn on LED

 }

 else// otherwise

 {

 digitalWrite(8,HIGH);// turn off LED

 }

 }

}

//

Result

Hold the breadboard with your hand. Tilt it to a certain extent, the LED will be on.

If there is no tilt, the LED will be off.

The principle of this experiment can be applied to relay control.

Experiment completed.

Thank you!

keyestudio

www.keyestudio.cc
 50

Project 14: IR remote control

Introduction

What is an infrared receiver?

The signal from the infrared remote controller is a series of binary pulse code. To avoid interference

from other infrared signals during the wireless transmission, the signal is pre-modulate at a

specific carrier frequency and then send out by a infrared emission diode. The infrared receiving

device needs to filter out other wave and receive signal at that specific frequency and modulate it back

to binary pulse code, known as demodulation.

Working principal

The built-in receiver converts the light signal it received from the sender into feeble electrical signal.

The signal will be amplified by the IC amplifier. After automatic gain control, band-pass filtering,

demodulation, wave shaping, it returns to the original code. The code is then input to the

code identification circuit by the receiver's signal output pin.

The pin and the connection of the infrared receiving head

Pin and wiring of infrared receiver

Infrared receiver has 3 pins.

When you use it, connect VOUT to analog pin, GND to GND, VCC to +5V.

2. Infrared remote control experiment

Hardware required

Infrared remote controller x1

Infrared receiver x1

LED x6

220Ω resistor x6

Multi-color breadboard wires x several

keyestudio

www.keyestudio.cc
 51

Connection

First, connect the controller board; then connect the infrared receiver as the above mentioned, connect

VOUT to digital pin 11, connect the LEDs with resistors and connect the resisters to pin 2,3,4,5,6,7.

Connection for R3:

Connection for 2560 R3:

keyestudio

www.keyestudio.cc
 52

Experimental principle

If you want to decode code of a remote controller, you must first know how it's coded. The coding

method we use here is NEC protocol. Below is a brief introduction.

·NEC protocol:

Features：

(1) 8 bit address and 8 bit command length

(2) address and command are transmitted twice for reliability

(3) pulse distance modulation

(4) carrier frequency of 38 KHZ

(5) bit time of 1.125ms or 2.25ms

Protocol is as below:

• Definition of logical 0 and 1 is as below

keyestudio

www.keyestudio.cc
 53

• Pulse transmitted when button is pressed and immediately released

The picture above shows a typical pulse train of the NEC protocol. With this protocol the LSB is

transmitted first. In this case Address $59 and Command $16 is transmitted. A message is started by a

9ms AGC burst, which was used to set the gain of the earlier IR receivers. This AGC burst is then

followed by a 4.5ms space, which is then followed by the address and command. Address and

Command are transmitted twice. The second time all bits are inverted and can be used for verification

of the received message. The total transmission time is constant because every bit is repeated with its

inverted length. If you are not interested in this reliability, you can ignore the inverted values, or you

can expend the Address and Command to 16 bits each!

• Pulse transmitted when button is pressed and released after a period of time

A command is transmitted only once, even when the key on the remote control remains pressed. Every

 110ms a repeat code is transmitted for as long as the key remains down. This repeat code is simply a

9ms AGC pulse followed by a 2.25ms space and a 560µs burst.

·Repeat pulse

keyestudio

www.keyestudio.cc
 54

Note: when the pulse enters the integrated receiver, there will be decoding, signal amplifying and

wave shaping process. So you need to make sure the level of the output is just the opposite from that

of the signal sending end. That is when there is no infrared signal, the output end is in high

level; when there is infrared signal, the output end is in low level. You can see the pulse of the

receiving end in the oscilloscope. Try to better understand the program base on what you see.

Sample program

#include <IRremote.h>

int RECV_PIN = 11;

int LED1 = 2;

int LED2 = 3;

int LED3 = 4;

int LED4 = 5;

int LED5 = 6;

int LED6 = 7;

long on1 = 0x00FFA25D;

long off1 = 0x00FFE01F;

long on2 = 0x00FF629D;

long off2 = 0x00FFA857;

long on3 = 0x00FFE21D;

long off3 = 0x00FF906F;

long on4 = 0x00FF22DD;

long off4 = 0x00FF6897;

long on5 = 0x00FF02FD;

long off5 = 0x00FF9867;

long on6 = 0x00FFC23D;

long off6 = 0x00FFB047;

IRrecv irrecv(RECV_PIN);

decode_results results;

// Dumps out the decode_results structure.

// Call this after IRrecv::decode()

// void * to work around compiler issue

//void dump(void *v) {

// decode_results *results = (decode_results *)v

void dump(decode_results *results) {

 int count = results->rawlen;

 if (results->decode_type == UNKNOWN)

 {

 Serial.println("Could not decode message");

keyestudio

www.keyestudio.cc
 55

 }

 else

 {

 if (results->decode_type == NEC)

 {

 Serial.print("Decoded NEC: ");

 }

 else if (results->decode_type == SONY)

 {

 Serial.print("Decoded SONY: ");

 }

 else if (results->decode_type == RC5)

 {

 Serial.print("Decoded RC5: ");

 }

 else if (results->decode_type == RC6)

 {

 Serial.print("Decoded RC6: ");

 }

 Serial.print(results->value, HEX);

 Serial.print(" (");

 Serial.print(results->bits, DEC);

 Serial.println(" bits)");

 }

 Serial.print("Raw (");

 Serial.print(count, DEC);

 Serial.print("): ");

 for (int i = 0; i < count; i++)

 {

 if ((i % 2) == 1) {

 Serial.print(results->rawbuf[i]*USECPERTICK, DEC);

 }

 else

 {

 Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);

 }

 Serial.print(" ");

 }

 Serial.println("");

keyestudio

www.keyestudio.cc
 56

 }

void setup()

 {

 pinMode(RECV_PIN, INPUT);

 pinMode(LED1, OUTPUT);

 pinMode(LED2, OUTPUT);

 pinMode(LED3, OUTPUT);

 pinMode(LED4, OUTPUT);

 pinMode(LED5, OUTPUT);

 pinMode(LED6, OUTPUT);

 pinMode(13, OUTPUT);

 Serial.begin(9600);

 irrecv.enableIRIn(); // Start the receiver

 }

int on = 0;

unsigned long last = millis();

void loop()

{

 if (irrecv.decode(&results))

 {

 // If it's been at least 1/4 second since the last

 // IR received, toggle the relay

 if (millis() - last > 250)

 {

 on = !on;

// digitalWrite(8, on ? HIGH : LOW);

 digitalWrite(13, on ? HIGH : LOW);

 dump(&results);

 }

 if (results.value == on1)

 digitalWrite(LED1, HIGH);

 if (results.value == off1)

 digitalWrite(LED1, LOW);

 if (results.value == on2)

 digitalWrite(LED2, HIGH);

 if (results.value == off2)

 digitalWrite(LED2, LOW);

keyestudio

www.keyestudio.cc
 57

 if (results.value == on3)

 digitalWrite(LED3, HIGH);

 if (results.value == off3)

 digitalWrite(LED3, LOW);

 if (results.value == on4)

 digitalWrite(LED4, HIGH);

 if (results.value == off4)

 digitalWrite(LED4, LOW);

 if (results.value == on5)

 digitalWrite(LED5, HIGH);

 if (results.value == off5)

 digitalWrite(LED5, LOW);

 if (results.value == on6)

 digitalWrite(LED6, HIGH);

 if (results.value == off6)

 digitalWrite(LED6, LOW);

 last = millis();

 irrecv.resume(); // Receive the next value

 }}

Program function

Decode the coded pulse signal emitted by the remote controller; execute corresponding action

according to the results of the decoding. In this way, you will be able to control your device with

remote controller.

Result

screen shot

keyestudio

www.keyestudio.cc
 58

Note：add IRremote folder into installation directory \Arduino\compiler libraries, or you will not be

able to compile.

For example：C:\Program Files\Arduino\libraries

keyestudio

www.keyestudio.cc
 59

Project 15: Analog value reading

Introduction

In this experiment, we will begin the learning of analog I/O interfaces. On an Arduino, there are 6

analog interfaces numbered from 0 to 5. These 6 interfaces can also be used as digital ones numbered

as 14-19. After a brief introduction, let's begin our project. Potentiometer used here is a typical output

component of analog value that is familiar to us.

Hardware required

Potentiometer *1

Breadboard*1

Breadboard jumper wires * several

Connection

In this experiment, we will convert the resistance value of the potentiometer to analog ones and

display it on the screen. This is an application we need to master well for our future experiments.

Connection circuit as below:

Connection for R3:

keyestudio

www.keyestudio.cc
 60

Connection for 2560 R3:

keyestudio

www.keyestudio.cc
 61

We use the analog interface 0.

The analog interface we use here is interface 0.

Sample program

The program compiling is simple. An analogRead () Statement can read the value of the interface.

The A/D acquisition of Arduino 328 is in 10 bits, so the value it reads is among 0 to 1023. One

difficulty in this project is to display the value on the screen, which is actually easy to learn. First, we

need to set the baud rate in voidsetup (). Displaying the value is a communication between Arduino

and PC, so the baud rate of the Arduino should match the the one in the PC's software set up.

Otherwise, the display will be messy codes or no display at all. In the lower right corner of the

Arduino software monitor window, there is a button for baud rate set up. The set up here needs to

match the one in the program. The statement in the program is Serial.begin(); enclosed is the baud rate

value, followed by statement for displaying. You can either use Serial.print() or Serial.println()

statement.

//

int potpin=0;// initialize analog pin 0

int ledpin=13;// initialize digital pin 13

int val=0;// define val, assign initial value 0

void setup()

{

pinMode(ledpin,OUTPUT);// set digital pin as “output”

keyestudio

www.keyestudio.cc
 62

Serial.begin(9600);// set baud rate at 9600

}

void loop()

{

digitalWrite(ledpin,HIGH);// turn on the LED on pin 13

delay(50);// wait for 0.05 second

digitalWrite(ledpin,LOW);// turn off the LED on pin 13

delay(50);// wait for 0.05 second

val=analogRead(potpin);// read the analog value of analog pin 0, and assign it to val

Serial.println(val);// display val’s value

}

//

Result

The sample program uses the built-in LED connected to pin 13. Each time the device reads a value,

the LED blinks.

Below is the analog value it reads.

When you rotate the potentiometer knob, you can see the displayed value changes. The reading of

analog value is a very common function since most sensors output analog value. After calculation, we

can have the corresponding value we need.

The experiment is now completed, thank you.

keyestudio

www.keyestudio.cc
 63

Project 16: 74HC595

Introduction

To put it simply, 74HC595 is a combination of 8-digit shifting register, memorizer and equipped with

tri-state output. Here, we use it to control 8 LEDs. You may wonder why use a 74HC595 to control

LED? Well, think about how many I/O it takes for an Arduino to control 8 LEDs? Yes, 8. For an

Arduino 168, it has only 20 I/O including analog ports. So, to save port resources, we use 74HC595 to

reduce the number of ports it needs. Using 74HC595 enables us to use 3 digital I/O port to control 8

LEDs!

Hardware required

74HC595 chip*1

Red M5 LED*4

Green M5 LED*4

220Ω resistor*8

Breadboard*1

Breadboard jumper wires*several

Note: for pin 13 OE port of 74HC595, it needs to connect to GND

Connection for R3:

keyestudio

www.keyestudio.cc
 64

Connection for 2560 R3:

keyestudio

www.keyestudio.cc
 65

The circuit may seem completed, but once you give it a good look, you will

find it easy!

Sample program

//

int data = 2;// set pin 14 of 74HC595as data input pin SI

int clock = 5;// set pin 11 of 74hc595 as clock pin SCK

int latch = 4;// set pin 12 of 74hc595 as output latch RCK

int ledState = 0;

const int ON = HIGH;

const int OFF = LOW;

void setup()

{

pinMode(data, OUTPUT);

pinMode(clock, OUTPUT);

pinMode(latch, OUTPUT);

}

void loop()

keyestudio

www.keyestudio.cc
 66

{

for(int i = 0; i < 256; i++)

{

updateLEDs(i);

delay(500);

}

}

void updateLEDs(int value)

{

digitalWrite(latch, LOW);//

shiftOut(data, clock, MSBFIRST, ~value);// serial data “output”, high level first

digitalWrite(latch, HIGH);// latch

}

//

Result

After downloading the program, you can see 8 LEDs displaying 8-bit binary number.

keyestudio

www.keyestudio.cc
 67

Project 17: 1-digit LED segment display

Introduction

LED segment displays are common for displaying numerical information. It's widely applied on

displays of electromagnetic oven, full automatic washing machine, water temperature display,

electronic clock etc. It is necessary that we learn how it works.

LED segment display is a semiconductor light-emitting device. Its basic unit is a light-emitting diode

(LED). LED segment display can be divided into 7-segment display and 8-segment display according

to the number of segments. 8-segment display has one more LED unit (for decimal point display)

than 7-segment one. In this experiment, we use a 8-segment display. According to the wiring method

of LED units, LED segment displays can be divided into display with common anode and display with

common cathode. Common anode display refers to the one that combine all the anodes of LED units

into one common anode (COM).

For the common anode display, connect the common anode (COM) to +5V. When the cathode level of

a certain segment is low, the segment is on; when the cathode level of a certain segment is high, the

segment is off. For the common cathode display, connect the common cathode (COM) to GND. When

the anode level of a certain segment is high, the segment is on; when the anode level of a certain

segment is low, the segment is off.

Common cathode 7-segment display

Common anode 7-segment display

Each segment of the display consists of an LED. So when you use it, you also need use a

current-limiting resistor. Otherwise, LED will be burnt out. In this experiment, we use a common

cathode display. As we mentioned above, for common cathode display, connect the common cathode

(COM) to GND. When the anode level of a certain segment is high, the segment is on; when the anode

level of a certain segment is low, the segment is off.

Hardware required

Eight-segment display*1

220Ω resistor*8

keyestudio

www.keyestudio.cc
 68

Breadboard*1

Breadboard jumper wires*several

Connection

Refer to below connection diagram for circuit connection

Connection for R3:

Connection for 2560 R3:

keyestudio

www.keyestudio.cc
 69

Sample program

There are seven segments for numerical display, one for decimal point display. Corresponding

segments will be turned on when displaying certain numbers. For example, when displaying number 1,

b and c segments will be turned on. We compile a subprogram for each number, and compile the main

program to display one number every 2 seconds, cycling display number 0 ~ 9. The displaying time

for each number is subject to the delay time, the longer the delay time, the longer the displaying time.

//

// set the IO pin for each segment

int a=7;// set digital pin 7 for segment a

int b=6;// set digital pin 6 for segment b

int c=5;// set digital pin 5 for segment c

int d=10;// set digital pin 10 for segment d

int e=11;// set digital pin 11 for segment e

int f=8;// set digital pin 8 for segment f

int g=9;// set digital pin 9 for segment g

int dp=4;// set digital pin 4 for segment dp

keyestudio

www.keyestudio.cc
 70

void digital_0(void) // display number 5

{

unsigned char j;

digitalWrite(a,HIGH);

digitalWrite(b,HIGH);

digitalWrite(c,HIGH);

digitalWrite(d,HIGH);

digitalWrite(e,HIGH);

digitalWrite(f,HIGH);

digitalWrite(g,LOW);

digitalWrite(dp,LOW);

}

void digital_1(void) // display number 1

{

unsigned char j;

digitalWrite(c,HIGH);// set level as “high” for pin 5, turn on segment c

digitalWrite(b,HIGH);// turn on segment b

for(j=7;j<=11;j++)// turn off other segments

digitalWrite(j,LOW);

digitalWrite(dp,LOW);// turn off segment dp

}

void digital_2(void) // display number 2

{

unsigned char j;

digitalWrite(b,HIGH);

digitalWrite(a,HIGH);

for(j=9;j<=11;j++)

digitalWrite(j,HIGH);

digitalWrite(dp,LOW);

digitalWrite(c,LOW);

digitalWrite(f,LOW);

}

void digital_3(void) // display number 3

{

digitalWrite(g,HIGH);

digitalWrite(a,HIGH);

digitalWrite(b,HIGH);

digitalWrite(c,HIGH);

digitalWrite(d,HIGH);

digitalWrite(dp,LOW);

keyestudio

www.keyestudio.cc
 71

digitalWrite(f,LOW);

digitalWrite(e,LOW);

}

void digital_4(void) // display number 4

{

digitalWrite(c,HIGH);

digitalWrite(b,HIGH);

digitalWrite(f,HIGH);

digitalWrite(g,HIGH);

digitalWrite(dp,LOW);

digitalWrite(a,LOW);

digitalWrite(e,LOW);

digitalWrite(d,LOW);

}

void digital_5(void) // display number 5

{

unsigned char j;

digitalWrite(a,HIGH);

digitalWrite(b, LOW);

digitalWrite(c,HIGH);

digitalWrite(d,HIGH);

digitalWrite(e, LOW);

digitalWrite(f,HIGH);

digitalWrite(g,HIGH);

digitalWrite(dp,LOW);

}

void digital_6(void) // display number 6

{

unsigned char j;

for(j=7;j<=11;j++)

digitalWrite(j,HIGH);

digitalWrite(c,HIGH);

digitalWrite(dp,LOW);

digitalWrite(b,LOW);

}

void digital_7(void) // display number 7

{

unsigned char j;

for(j=5;j<=7;j++)

digitalWrite(j,HIGH);

keyestudio

www.keyestudio.cc
 72

digitalWrite(dp,LOW);

for(j=8;j<=11;j++)

digitalWrite(j,LOW);

}

void digital_8(void) // display number 8

{

unsigned char j;

for(j=5;j<=11;j++)

digitalWrite(j,HIGH);

digitalWrite(dp,LOW);

}

void digital_9(void) // display number 5

{

unsigned char j;

digitalWrite(a,HIGH);

digitalWrite(b,HIGH);

digitalWrite(c,HIGH);

digitalWrite(d,HIGH);

digitalWrite(e, LOW);

digitalWrite(f,HIGH);

digitalWrite(g,HIGH);

digitalWrite(dp,LOW);

}

void setup()

{

int i;// set variable

for(i=4;i<=11;i++)

pinMode(i,OUTPUT);// set pin 4-11as “output”

}

void loop()

{

while(1)

{

digital_0();// display number 0

delay(1000);// wait for 1s

digital_1();// display number 1

delay(1000);// wait for 1s

digital_2();// display number 2

delay(1000); // wait for 1s

digital_3();// display number 3

keyestudio

www.keyestudio.cc
 73

delay(1000); // wait for 1s

digital_4();// display number 4

delay(1000); // wait for 1s

digital_5();// display number 5

delay(1000); // wait for 1s

digital_6();// display number 6

delay(1000); // wait for 1s

digital_7();// display number 7

delay(1000); // wait for 1s

digital_8();// display number 8

delay(1000); // wait for 1s

digital_9();// display number 9

delay(1000); // wait for 1s

}

}

//

Result

LED segment display displays number 0 to 9

keyestudio

www.keyestudio.cc
 74

Project 18: 4-digit LED segment display

Introduction

In this experiment, we use an Arduino to drive a common anode, 4-digit, 7-segment LED display. For

LED display, current-limiting resistors are indispensable. There are two wiring method

for Current-limiting resistor. One is to connect one resistor for each anode, 4 in totals for d1-d4 anode.

An advantage for this method is that it requires fewer resistors, only 4. But it cannot maintain

consistent brightness, 1 the brightest, 8, the least bright. Another method is to connect one resistor to

each pin. It guarantees consistent brightness, but requires more resistors. In this experiment, we use 8

220Ω resistors (we use 220Ω resistors because no 100Ω resistor available. If you use 100Ω, the

displaying will be brighter).

Connection

For 4-digit displays, there are 12 pins in total. When you place the decimal point downward (see

below photo position), the pin on the lower left part is refer to as 1, the upper left part 12.

keyestudio

www.keyestudio.cc
 75

Manual for LED segment display

keyestudio

www.keyestudio.cc
 76

Connection for R3:

Connection for 2560 R3:

keyestudio

www.keyestudio.cc
 77

Sample Program

//

// display 1234

 // select pin for cathode

 int a = 1;

 int b = 2;

 int c = 3;

 int d = 4;

 int e = 5;

 int f = 6;

 int g = 7;

 int dp = 8;

 // select pin for anode

 int d4 = 9;

 int d3 = 10;

 int d2 = 11;

 int d1 = 12;

 // set variable

 long n = 1230;

 int x = 100;

 int del = 55; // fine adjustment for clock

 void setup()

keyestudio

www.keyestudio.cc
 78

 {

 pinMode(d1, OUTPUT);

 pinMode(d2, OUTPUT);

 pinMode(d3, OUTPUT);

 pinMode(d4, OUTPUT);

 pinMode(a, OUTPUT);

 pinMode(b, OUTPUT);

 pinMode(c, OUTPUT);

 pinMode(d, OUTPUT);

 pinMode(e, OUTPUT);

 pinMode(f, OUTPUT);

 pinMode(g, OUTPUT);

 pinMode(dp, OUTPUT);

 }

///

void loop()

{

 Display(1, 1);

 Display(2, 2);

 Display(3, 3);

 Display(4, 4);

}

///

void WeiXuan(unsigned char n)//

{

 switch(n)

 {

 case 1:

 digitalWrite(d1,LOW);

 digitalWrite(d2, HIGH);

 digitalWrite(d3, HIGH);

 digitalWrite(d4, HIGH);

 break;

 case 2:

 digitalWrite(d1, HIGH);

 digitalWrite(d2, LOW);

 digitalWrite(d3, HIGH);

 digitalWrite(d4, HIGH);

 break;

keyestudio

www.keyestudio.cc
 79

 case 3:

 digitalWrite(d1,HIGH);

 digitalWrite(d2, HIGH);

 digitalWrite(d3, LOW);

 digitalWrite(d4, HIGH);

 break;

 case 4:

 digitalWrite(d1, HIGH);

 digitalWrite(d2, HIGH);

 digitalWrite(d3, HIGH);

 digitalWrite(d4, LOW);

 break;

 default :

 digitalWrite(d1, HIGH);

 digitalWrite(d2, HIGH);

 digitalWrite(d3, HIGH);

 digitalWrite(d4, HIGH);

 break;

 }

}

void Num_0()

{

 digitalWrite(a, HIGH);

 digitalWrite(b, HIGH);

 digitalWrite(c, HIGH);

 digitalWrite(d, HIGH);

 digitalWrite(e, HIGH);

 digitalWrite(f, HIGH);

 digitalWrite(g, LOW);

 digitalWrite(dp,LOW);

}

void Num_1()

{

 digitalWrite(a, LOW);

 digitalWrite(b, HIGH);

 digitalWrite(c, HIGH);

 digitalWrite(d, LOW);

 digitalWrite(e, LOW);

 digitalWrite(f, LOW);

 digitalWrite(g, LOW);

keyestudio

www.keyestudio.cc
 80

 digitalWrite(dp,LOW);

}

void Num_2()

{

 digitalWrite(a, HIGH);

 digitalWrite(b, HIGH);

 digitalWrite(c, LOW);

 digitalWrite(d, HIGH);

 digitalWrite(e, HIGH);

 digitalWrite(f, LOW);

 digitalWrite(g, HIGH);

 digitalWrite(dp,LOW);

}

void Num_3()

{

 digitalWrite(a, HIGH);

 digitalWrite(b, HIGH);

 digitalWrite(c, HIGH);

 digitalWrite(d, HIGH);

 digitalWrite(e, LOW);

 digitalWrite(f, LOW);

 digitalWrite(g, HIGH);

 digitalWrite(dp,LOW);

}

void Num_4()

{

 digitalWrite(a, LOW);

 digitalWrite(b, HIGH);

 digitalWrite(c, HIGH);

 digitalWrite(d, LOW);

 digitalWrite(e, LOW);

 digitalWrite(f, HIGH);

 digitalWrite(g, HIGH);

 digitalWrite(dp,LOW);

}

void Num_5()

{

 digitalWrite(a, HIGH);

 digitalWrite(b, LOW);

 digitalWrite(c, HIGH);

keyestudio

www.keyestudio.cc
 81

 digitalWrite(d, HIGH);

 digitalWrite(e, LOW);

 digitalWrite(f, HIGH);

 digitalWrite(g, HIGH);

 digitalWrite(dp,LOW);

}

void Num_6()

{

 digitalWrite(a, HIGH);

 digitalWrite(b, LOW);

 digitalWrite(c, HIGH);

 digitalWrite(d, HIGH);

 digitalWrite(e, HIGH);

 digitalWrite(f, HIGH);

 digitalWrite(g, HIGH);

 digitalWrite(dp,LOW);

}

void Num_7()

{

 digitalWrite(a, HIGH);

 digitalWrite(b, HIGH);

 digitalWrite(c, HIGH);

 digitalWrite(d, LOW);

 digitalWrite(e, LOW);

 digitalWrite(f, LOW);

 digitalWrite(g, LOW);

 digitalWrite(dp,LOW);

}

void Num_8()

{

 digitalWrite(a, HIGH);

 digitalWrite(b, HIGH);

 digitalWrite(c, HIGH);

 digitalWrite(d, HIGH);

 digitalWrite(e, HIGH);

 digitalWrite(f, HIGH);

 digitalWrite(g, HIGH);

 digitalWrite(dp,LOW);

}

void Num_9()

keyestudio

www.keyestudio.cc
 82

{

 digitalWrite(a, HIGH);

 digitalWrite(b, HIGH);

 digitalWrite(c, HIGH);

 digitalWrite(d, HIGH);

 digitalWrite(e, LOW);

 digitalWrite(f, HIGH);

 digitalWrite(g, HIGH);

 digitalWrite(dp,LOW);

}

void Clear() // clear the screen

{

 digitalWrite(a, LOW);

 digitalWrite(b, LOW);

 digitalWrite(c, LOW);

 digitalWrite(d, LOW);

 digitalWrite(e, LOW);

 digitalWrite(f, LOW);

 digitalWrite(g, LOW);

 digitalWrite(dp,LOW);

}

void pickNumber(unsigned char n)// select number

{

 switch(n)

 {

 case 0:Num_0();

 break;

 case 1:Num_1();

 break;

 case 2:Num_2();

 break;

 case 3:Num_3();

 break;

 case 4:Num_4();

 break;

 case 5:Num_5();

 break;

 case 6:Num_6();

 break;

 case 7:Num_7();

keyestudio

www.keyestudio.cc
 83

 break;

 case 8:Num_8();

 break;

 case 9:Num_9();

 break;

 default:Clear();

 break;

 }

}

void Display(unsigned char x, unsigned char Number)// take x as coordinate and display number

{

 WeiXuan(x);

 pickNumber(Number);

 delay(1);

 Clear() ; // clear the screen

}

//

Result

Download the above code to the controller board and see the result.

The experiment result displays 1234 on the display.

Note: if it’s not displaying correctly, check the wiring.

Thank you.

Project 19: 8*8 LED matrix

Introduction

LED matrix is very common and useful in our life. It’s used in advertising LED display, elevator floor

display, displays in bus station and so on. Let’s begin the learning right away.

8x8 LED matrix diagram

keyestudio

www.keyestudio.cc
 84

Picture of 8x8 LED matrix

In the picture, you can see an LED matrix and pin layout. You can see from the equivalent circuit that

as long as the corresponding X, Y axes of an LED are in forward bias voltage, the LED will be turned

on. For example, if you want to turn on the upper left LED, Y0=1, X0=0 will do the trick. When used,

you can connect the current-limit resistor on either X axis or Y axis

8*8 LED matrix scanning mode

 Pins on 8X8 LED matrix welding surface

Picture of 8X8 LED matrix and pin layout

keyestudio

www.keyestudio.cc
 85

Generally, LED uses scanning for display. In practical application, it is divided into three modes

(1) Dot scanning

(2) Row & column scanning

For mode 1, in order to meet the visual persistence requirement, the frequency should be

in 16×64=1024Hz, cycle less than 1ms; for mode 2&3, the frequency should be above 16×8=128Hz,

cycle less than 7.8ms. In addition, when driving one row or one column (8 LEDs), you need external

driver circuit for higher current; otherwise, LEDs will be in low brightness.

8*8 LED matrix applications

The internal structure and outer appearance of LED matrix are as follow. 8*8 LED matrix consists of

64 LEDs. Every LED is placed is the intersection area of row and column. When the level for a row is

1, the corresponding column level 0, the LED in there intersection will be on. For example, if you

want to turn on the first LED, set pin 9 with high level and pin 13 low level; if you want to turn on the

first row, set pin 9 with high level and pin 13, 3, 4, 10, 6, 11, 15, 16 with low level; if you want to turn

on the first column, set pin 13 with low level, and pin 9, 14, 8, 12, 1, 7, 2, 5 with high level.

Generally, the LED matrix we used for displaying Chinese characters in Song typeface is 16 * 16 LED

matrix. Each Chinese character is displayed within this 16*16 area, which means you need four 8*8

LED matrixes. To display "你", you need to turn on corresponding LEDs. As LEDs in the row will be

turned on when they are in low level, and LEDs in the column will be turned on in high level. So to

display "你", you need to send signal 1111011101111111，0xF7，0x7F to pins 13-16 in the

columns; send signal 1 to pin 9 in the first row, and then signal 0 to the first row;

send 1111011101111111，0xF7，0x7F to pins 13-16 to the second row, and then signal one for pin 14 in

this row, and so forth. As long as the time interval for each row is short enough, you will see a "你"

after the scanning of 16 rows is completed. The second method is to send signal to the rows and scan

columns, the same working principle.

Display number “0”:

keyestudio

www.keyestudio.cc
 86

 ● ● ●

 ● ●

 ● ●

 ● ●

 ● ●

 ● ●

 ● ● ●

As above picture shows, to display number “0”, the codes in the columns are 00H, 00H, 3EH, 41H,

41H, 3EH, 00H, 00H; send these codes to corresponding columns and you will see the display of

number “0”.

Sample program for displaying “0”

//

// set an array to store character of “0”

unsigned char Text[]={0x00,0x1c,0x22,0x22,0x22,0x22,0x22,0x1c};

void Draw_point(unsigned char x,unsigned char y)// point drawing function

{

 clear_();

 digitalWrite(x+2, HIGH);

 digitalWrite(y+10, LOW);

 delay(1);

}

void show_num(void)// display function, call point drawing function

{

 unsigned char i,j,data;

 for(i=0;i<8;i++)

 {

 data=Text[i];

 for(j=0;j<8;j++)

 {

 if(data & 0x01)Draw_point(j,i);

 data>>=1;

 }

 }

}

void setup(){

int i = 0 ;

keyestudio

www.keyestudio.cc
 87

for(i=2;i<18;i++)

 {

 pinMode(i, OUTPUT);

 }

 clear_();

}

void loop()

{

 show_num();

}

void clear_(void)// clear screen

{

 for(int i=2;i<10;i++)

 digitalWrite(i, LOW);

 for(int i=0;i<8;i++)

 digitalWrite(i+10, HIGH);

}

//

Result

Connection for R3:

keyestudio

www.keyestudio.cc
 88

Connection for 2560 R3:

keyestudio

www.keyestudio.cc
 89

Arduino 8x8 dot matrix / / Note: look at the pin diagram backward.

For example: 'H' to '0'

Line correspondence:

Adding 1K or 220 ohm current limiting resistor in each column

Arduino 8x8 LED matrix

2 ----------------------0 // row selection 0

3 ----------------------1 // row selection 1

4 ----------------------2 // row selection 2

5 ----------------------3 // row selection 3

6 ----------------------4 // row selection 4

7 ----------------------5 // row selection 5

8 ---------------------6 // row selection 6

9 ---------------------7 // row selection 7

Arduino 8x8 LED matrix

10 ---------------------A // column selection A

11 ---------------------B // column selection B

12 ---------------------C // column selection C

13 ---------------------D // column selection D

14 ---------------------E // column selection E

15 ---------------------F // column selection F

16 ---------------------G // column selection G

17 ---------------------H // column selection H

Picture of 8X8 LED matrix and pin layout

Pins on 8X8 LED matrix welding surface

keyestudio

www.keyestudio.cc
 90

Project 20: 1602 LCD

Introduction

In this experiment, we use an Arduino to drive the 1602 LCD.

1602 LCD has wide applications. In the beginning, 1602 LCD uses a HD44780 controller. Now,

almost all 1602 LCD module uses a compatible IC, so their features are basically the same.

1602LCD main parameters:

 Display capacity: 16 × 2 characters.

 Chip operating voltage: 4.5 ~ 5.5V.

 Working current: 2.0mA (5.0V).

 Optimum working voltage of the module is 5.0V.

 Character size: 2.95 * 4.35 (W * H) mm.

Pin description of 1602 LCD

No. Mark Pin description No. Mark Pin description

1 VSS Power GND 9 D2 Date I/O

2 VDD Power positive 10 D3 Date I/O

3 VL LCD voltage bias signal 11 D4 Date I/O

4 RS Select data/command(V/L) 12 D5 Date I/O

5 R/W Select read/write(H/L) 13 D6 Date I/O

6 E Enable signal 14 D7 Date I/O

7 D0 Date I/O 15 BLA Back light power positive

8 D1 Date I/O 16 BLK Back light power negative

Interface description:

1. two power sources, one for module power, another one for back light, generally use 5V. In this

project, we use 3.3V for back light.

2. VL is the pin for adjusting contrast ratio; it usually connects a potentiometer(no more than 5KΩ) in

series for its adjustment. In this experiment, we use a 1KΩ resistor. For its connection, it has 2

methods, namely high potential and low potential. Here, we use low potential method; connect the

resistor and then the GND.

3. RS is a very common pin in LCD. It's a selecting pin for command/data. When the pin is in high

level, it's in data mode; when it's in low level, it's in command mode.

keyestudio

www.keyestudio.cc
 91

4. RW pin is also very common in LCD. It's a selecting pin for read/write. When the

pin is in high level, it's in read operation; when it's in low level, it's in write operation.

5. E pin is also very common in LCD. Usually, when the signal in the bus is stabilized, it sends out a

positive pulse requiring read operation. When this pin is in high level, the bus is not allowed to have

any change.

6. D0-D7 is 8-bit bidirectional parallel bus, used for command and data transmission.

7. BLA is anode for back light; BLK, cathode for back light.

4 basic operations of 1602LCD:

Read status input RS=L, R/W=H, E=H output D0-D7=status word

Write command input RS=L, R/W=H, D0-D7=command

code, E=high pulse

output none

Read data input RS=H, R/W=H, E=H output D0-D7=data

Write data input RS=H, R/W=L, D0-D7=data,

E=high pulse

output none

1602 LCD photo:

Connection & sample program

1602 can directly communicate with Arduino. According to the product manual, it has two connection

methods, namely 8-bit connection and 4-bit connection.

8-bit connection method:

keyestudio

www.keyestudio.cc
 92

keyestudio

www.keyestudio.cc
 93

Connection for R3:

Connection for 2560 R3:

keyestudio

www.keyestudio.cc
 94

Sample code A:

//

int DI = 12;

int RW = 11;

int DB[] = {3, 4, 5, 6, 7, 8, 9, 10};// use array to select pin for bus

int Enable = 2;

void LcdCommandWrite(int value) {

// define all pins

int i = 0;

for (i=DB[0]; i <= DI; i++) // assign value for bus

{

 digitalWrite(i,value & 01);// for 1602 LCD, it uses D7-D0(not D0-D7) for signal identification;

here, it’s used for signal inversion.

 value >>= 1;

}

digitalWrite(Enable,LOW);

delayMicroseconds(1);

digitalWrite(Enable,HIGH);

delayMicroseconds(1); // wait for 1ms

digitalWrite(Enable,LOW);

delayMicroseconds(1); // wait for 1ms

}

void LcdDataWrite(int value) {

// initialize all pins

int i = 0;

digitalWrite(DI, HIGH);

digitalWrite(RW, LOW);

for (i=DB[0]; i <= DB[7]; i++) {

 digitalWrite(i,value & 01);

 value >>= 1;

}

digitalWrite(Enable,LOW);

delayMicroseconds(1);

digitalWrite(Enable,HIGH);

delayMicroseconds(1);

digitalWrite(Enable,LOW);

keyestudio

www.keyestudio.cc
 95

delayMicroseconds(1); // wait for 1ms

}

void setup (void) {

int i = 0;

for (i=Enable; i <= DI; i++) {

 pinMode(i,OUTPUT);

}

delay(100);

// initialize LCD after a brief pause

// for LCD control

LcdCommandWrite(0x38); // select as 8-bit interface, 2-line display, 5x7 character size

delay(64);

LcdCommandWrite(0x38); // select as 8-bit interface, 2-line display, 5x7 character size

delay(50);

LcdCommandWrite(0x38); // select as 8-bit interface, 2-line display, 5x7 character size

delay(20);

LcdCommandWrite(0x06); // set input mode

 // auto-increment, no display of shifting

delay(20);

LcdCommandWrite(0x0E); // display setup

 // turn on the monitor, cursor on, no flickering

delay(20);

LcdCommandWrite(0x01); // clear the scree, cursor position returns to 0

delay(100);

LcdCommandWrite(0x80); // display setup

 // turn on the monitor, cursor on, no flickering

delay(20);

}

void loop (void) {

 LcdCommandWrite(0x01); // clear the scree, cursor position returns to 0

 delay(10);

 LcdCommandWrite(0x80+3);

 delay(10);

 // write in welcome message

 LcdDataWrite('W');

 LcdDataWrite('e');

 LcdDataWrite('l');

keyestudio

www.keyestudio.cc
 96

 LcdDataWrite('c');

 LcdDataWrite('o');

 LcdDataWrite('m');

 LcdDataWrite('e');

 LcdDataWrite(' ');

 LcdDataWrite('t');

 LcdDataWrite('o');

 delay(10);

 LcdCommandWrite(0xc0+1); // set cursor position at second line, second position

 delay(10);

 LcdDataWrite('g');

 LcdDataWrite('e');

 LcdDataWrite('e');

 LcdDataWrite('k');

 LcdDataWrite('-');

 LcdDataWrite('w');

 LcdDataWrite('o');

 LcdDataWrite('r');

 LcdDataWrite('k');

 LcdDataWrite('s');

 LcdDataWrite('h');

 LcdDataWrite('o');

 LcdDataWrite('p');

 delay(5000);

 LcdCommandWrite(0x01); // clear the screen, cursor returns to 0

 delay(10);

 LcdDataWrite('I');

 LcdDataWrite(' ');

 LcdDataWrite('a');

 LcdDataWrite('m');

 LcdDataWrite(' ');

 LcdDataWrite('h');

 LcdDataWrite('o');

 LcdDataWrite('n');

 LcdDataWrite('g');

 LcdDataWrite('y');

 LcdDataWrite('i');

 delay(3000);

 LcdCommandWrite(0x02); // set mode as new characters replay old ones, where there is no new ones

remain the same

keyestudio

www.keyestudio.cc
 97

 delay(10);

 LcdCommandWrite(0x80+5); // set cursor position at first line, sixth position

 delay(10);

 LcdDataWrite('t');

 LcdDataWrite('h');

 LcdDataWrite('e');

 LcdDataWrite(' ');

 LcdDataWrite('a');

 LcdDataWrite('d');

 LcdDataWrite('m');

 LcdDataWrite('i');

 LcdDataWrite('n');

 delay(5000);

}

//

4-bit connection method:

When using this module, 8-bit connection uses all the digital pins of the Arduino, leaving no pin for

sensors. What then? We can use 4-bit connection.

Connection circuit:

Connection for R3:

keyestudio

www.keyestudio.cc
 98

Connection for 2560 R3:

After the connection, upload below code to the controller board and see how it goes.

Sample code B:

//

int LCD1602_RS=12;

int LCD1602_RW=11;

int LCD1602_EN=10;

int DB[] = { 6, 7, 8, 9};

char str1[]="Welcome to";

char str2[]="geek-workshop";

char str3[]="this is the";

char str4[]="4-bit interface";

void LCD_Command_Write(int command)

{

int i,temp;

digitalWrite(LCD1602_RS,LOW);

digitalWrite(LCD1602_RW,LOW);

digitalWrite(LCD1602_EN,LOW);

temp=command & 0xf0;

for (i=DB[0]; i <= 9; i++)

{

 digitalWrite(i,temp & 0x80);

 temp <<= 1;

keyestudio

www.keyestudio.cc
 99

}

digitalWrite(LCD1602_EN,HIGH);

delayMicroseconds(1);

digitalWrite(LCD1602_EN,LOW);

temp=(command & 0x0f)<<4;

for (i=DB[0]; i <= 10; i++)

{

 digitalWrite(i,temp & 0x80);

 temp <<= 1;

}

digitalWrite(LCD1602_EN,HIGH);

delayMicroseconds(1);

digitalWrite(LCD1602_EN,LOW);

}

void LCD_Data_Write(int dat)

{

int i=0,temp;

digitalWrite(LCD1602_RS,HIGH);

digitalWrite(LCD1602_RW,LOW);

digitalWrite(LCD1602_EN,LOW);

temp=dat & 0xf0;

for (i=DB[0]; i <= 9; i++)

{

 digitalWrite(i,temp & 0x80);

 temp <<= 1;

}

digitalWrite(LCD1602_EN,HIGH);

delayMicroseconds(1);

digitalWrite(LCD1602_EN,LOW);

temp=(dat & 0x0f)<<4;

for (i=DB[0]; i <= 10; i++)

{

 digitalWrite(i,temp & 0x80);

keyestudio

www.keyestudio.cc
 100

 temp <<= 1;

}

digitalWrite(LCD1602_EN,HIGH);

delayMicroseconds(1);

digitalWrite(LCD1602_EN,LOW);

}

void LCD_SET_XY(int x, int y)

{

 int address;

 if (y ==0) address = 0x80 + x;

 else address = 0xC0 + x;

 LCD_Command_Write(address);

}

void LCD_Write_Char(int x,int y,int dat)

{

 LCD_SET_XY(x, y);

 LCD_Data_Write(dat);

}

void LCD_Write_String(int X,int Y,char *s)

{

 LCD_SET_XY(X, Y); // address setup

 while (*s) // write character string

 {

 LCD_Data_Write(*s);

 s ++;

 }

}

void setup (void)

{

 int i = 0;

 for (i=6; i <= 12; i++)

 {

 pinMode(i,OUTPUT);

 }

 delay(100);

keyestudio

www.keyestudio.cc
 101

 LCD_Command_Write(0x28);// 4 wires, 2 lines 5x7

 delay(50);

 LCD_Command_Write(0x06);

 delay(50);

 LCD_Command_Write(0x0c);

 delay(50);

 LCD_Command_Write(0x80);

 delay(50);

 LCD_Command_Write(0x01);

 delay(50);

}

void loop (void)

{

 LCD_Command_Write(0x01);

 delay(50);

 LCD_Write_String(3,0,str1);// line 1, start at the fourth address

 delay(50);

 LCD_Write_String(1,1,str2);// line 2, start at the second address

 delay(5000);

 LCD_Command_Write(0x01);

 delay(50);

 LCD_Write_String(0,0,str3);

 delay(50);

 LCD_Write_String(0,1,str4);

 delay(5000);

}

//

keyestudio

www.keyestudio.cc
 102

Project 21: 9g servo control

Introduction

Servomotor is a position control rotary actuator. It mainly consists of housing, circuit board, core-less

motor, gear and position sensor. The receiver or MCU outputs a signal to the servomotor. The motor

has a built-in reference circuit that gives out reference signal, cycle of 20ms and width of 1.5ms. The

motor compares the acquired DC bias voltage to the voltage of the potentiometer and outputs a

voltage difference. The IC on the circuit board will decide the rotate direction accordingly and drive

the core-less motor. The gear then pass the force to the shaft. The sensor will determine if it has

reached the commanded position according to the feedback signal. Servomotors are used in control

systems that requires to have and maintain different angles. When the motor speed is definite, the gear

will cause the potentiometer to rotate. When the voltage difference reduces to zero, the motor stops.

Normally, the rotation angle range is among 0-180 degrees.

Servomotor comes with many specifications. But all of them have three connection wires,

distinguished by brown, red, orange colors(different brand may have different color). Brown one is for

GND, red one for power positive, orange one for signal

line.

keyestudio

www.keyestudio.cc
 103

The rotate angle of the servo motor is controlled by regulating the duty cycle of the

PWM(Pulse-Width Modulation) signal. The standard cycle of the PWM signal is 20ms（50Hz）.

Theoretically, the width is distributed between 1ms-2ms, but in fact, it's between 0.5ms-2.5ms. The

width corresponds the rotate angle from 0° to 180°. But note that for different brand motor, the same

signal may have different rotate angle.

After some basic knowledge, let's learn how to control a servomotor. For this experiment, you only

need a servomotor and several jumper wires.

Hardware required

RB—412 servomotor*1

Breadboard jumper wire*several

Connection & sample program

There are two ways to control a servomotor with Arduino. One is to use a common digital sensor port

of Arduino to produce square wave with different duty cycle to simulate PWM signal and use that

signal to control the positioning of the motor. Another way is to directly use the Servo function of the

Arduino to control the motor. In this way, the program will be easier but it can only control

keyestudio

www.keyestudio.cc
 104

two-contact motor because for the servo function, only digital pin 9 ang 10 can be used. The Arduino

drive capacity is limited. So if you need to control more than one motor, you will need external power.

Method 1

Connection for R3:

Connection for 2560 R3:

keyestudio

www.keyestudio.cc
 105

Connect the motor to digital pin 9.

Compile a program to control the motor to rotate to the commanded angle input by the user and

display the angle on the screen.

Sample program A

//

int servopin=9;// select digital pin 9 for servomotor signal line

int myangle;// initialize angle variable

int pulsewidth;// initialize width variable

int val;

void servopulse(int servopin,int myangle)// define a servo pulse function

{

pulsewidth=(myangle*11)+500;// convert angle to 500-2480 pulse width

digitalWrite(servopin,HIGH);// set the level of servo pin as “high”

delayMicroseconds(pulsewidth);// delay microsecond of pulse width

digitalWrite(servopin,LOW);// set the level of servo pin as “low”

delay(20-pulsewidth/1000);

}

keyestudio

www.keyestudio.cc
 106

void setup()

{

pinMode(servopin,OUTPUT);// set servo pin as “output”

Serial.begin(9600);// connect to serial port, set baud rate at “9600”

Serial.println("servo=o_seral_simple ready") ;

}

void loop()// convert number 0 to 9 to corresponding 0-180 degree angle, LED blinks corresponding

number of time

{

val=Serial.read();// read serial port value

if(val>'0'&&val<='9')

{

val=val-'0';// convert characteristic quantity to numerical variable

val=val*(180/9);// convert number to angle

Serial.print("moving servo to ");

Serial.print(val,DEC);

Serial.println();

for(int i=0;i<=50;i++) // giving the servo time to rotate to commanded position

{

servopulse(servopin,val);// use the pulse function

}

}

}

//

Method 2:

Let's first take a look at the Arduino built-in servo function and some of its common statements.

1. attach（interface）——select pin for servo, can only use pin 9 or 10.

2. write（angle）——used to control the rotate angle of the servo, can set the angle among 0 degree to

180 degree.

3. read（）——used to read the angle of the servo, consider it a function to read the value in the write()

function.

4、attached（）——determine whether the parameter of the servo is sent to the servo pin.

5、detach（）—— disconnect the servo and the pin, and the pin(digital pin 9 or 10) can be used for

PWM port.

Note: Note: the written form of the above statements are " servo variable name. specific statement ()",

e.g. myservo. Attach (9).

Still, connect the servo to pin 9.

file:///D:\Youdao\Dict\6.3.67.3030\resultui\frame\javascript:void(0);
file:///D:\Youdao\Dict\6.3.67.3030\resultui\frame\javascript:void(0);

keyestudio

www.keyestudio.cc
 107

Sample program B：

//

#include <Servo.h>// define a header file. Special attention here, you can call the servo function

directly from Arduino's software menu

bar Sketch>Importlibrary>Servo, or input #include <Servo.h>. Make sure there is a space

between #include and <Servo.h>. Otherwise, it will cause compile error.

Servo myservo;// define servo variable name

void setup()

{

myservo.attach(9);// select servo pin(9 or 10)

}

void loop()

{

myservo.write(90);// set rotate angle of the motor

}

//

Above are the two methods to control the servo. You can choose either one according to your liking or

actual need.

